Respuesta :
To find f(g(h(x))), we need to find g(h(x)) first. To do that we are going to evaluate the function g(x) at h(x):
We know that [tex]h(x)=9x^2-8[/tex] and [tex]g(x)=3x^2+5[/tex]
[tex]g(h(x))=g(9x^2-8)=3(9x^2-8)^2+5[/tex]
[tex]=3(81x^4-144x^2+64)+5[/tex]
[tex]=243x^4-432x^2+192+5[/tex]
[tex]=243x^4-432x^2+197[/tex]
Now that we know that [tex]g(h(x))=243x^4-432x^2+197[/tex], to find [tex]f(g(h(x)))[/tex] we are going to evaluate [tex]f[/tex] at [tex]243x^4-432x^2+197[/tex]
[tex]f(g(h(x)))=f(243x^4-432x^2+197)[/tex]
[tex]f(243x^4-432x^2+197)=6(243x^4-432x^2+197)^3[/tex][tex]+5(243x^4-432x^2+197)[/tex]
[tex]=86093442x^{12}-459165024x^{10}+1025681130x^8-1228219200x^6[/tex][tex]+83152048x^4-301780944x^2+45873223[/tex]
Since the degree of a polynomial is the highest degree of its monomials, we can conclude that the degree of f(g(h(x))) is 12
We know that [tex]h(x)=9x^2-8[/tex] and [tex]g(x)=3x^2+5[/tex]
[tex]g(h(x))=g(9x^2-8)=3(9x^2-8)^2+5[/tex]
[tex]=3(81x^4-144x^2+64)+5[/tex]
[tex]=243x^4-432x^2+192+5[/tex]
[tex]=243x^4-432x^2+197[/tex]
Now that we know that [tex]g(h(x))=243x^4-432x^2+197[/tex], to find [tex]f(g(h(x)))[/tex] we are going to evaluate [tex]f[/tex] at [tex]243x^4-432x^2+197[/tex]
[tex]f(g(h(x)))=f(243x^4-432x^2+197)[/tex]
[tex]f(243x^4-432x^2+197)=6(243x^4-432x^2+197)^3[/tex][tex]+5(243x^4-432x^2+197)[/tex]
[tex]=86093442x^{12}-459165024x^{10}+1025681130x^8-1228219200x^6[/tex][tex]+83152048x^4-301780944x^2+45873223[/tex]
Since the degree of a polynomial is the highest degree of its monomials, we can conclude that the degree of f(g(h(x))) is 12