Respuesta :
A circle with an area of 254.47 square inches is given.
We have to determine the circumference of the circle.
Since, Area of circle = [tex] \Pi r^{2} [/tex] where r is the radius of the circle.
[tex] \Pi r^{2}=254.47 [/tex]
[tex] \frac{22}{7} \times r^{2}=254.47 [/tex]
[tex] r^{2}=\frac{254.47 \times 7}{22} [/tex]
[tex] r^{2}=80.97 [/tex]
[tex] r=\sqrt{80.97} [/tex]
r = 8.99
Therefore, r = 9 inches (approximately)
Circumference of a circle = [tex] 2\Pi r [/tex]
= [tex] 2 \times \frac{22}{7} \times 9 [/tex]
= 56.57 inches
= 56.6 inches (approximately).
Therefore, the circumference of the circle is 56.6 inches.