If P(not yellow) = 4/15, which best describes the probability of the complement of the event?

A. P(yellow) = 8/15
B. P(yellow) = 11/15
C. P(not yellow) = 8/15
D. P(not yellow) = 11/15

Respuesta :

Answer:   B. P(yellow) = 11/15

Step-by-step explanation:  A:event that it is not yellow

                                              B(complement of A):event that it is yellow

                            P(B)=1-P(A)

                      ⇒  P(B)=1-[tex]\frac{4}{15}[/tex]

                      ⇒ P(B)= [tex]\frac{15-4}{15}[/tex]

                      ⇒ P(B)= [tex]\frac{11}{15}[/tex]

                      ⇒ P(yellow)= 11/15

Answer:  The correct option is (B) [tex]\textup{P(yellow)}=\dfrac{11}{15}.[/tex]

Step-by-step explanation:  Given that the probability of an event of not yellow is as follows:

[tex]\textup{P(not yellow)}=\dfrac{4}{15}.[/tex]

We are given to find the probability of the complement of the event.

The probability of the complement of an event A

is given by

[tex]\textup{P(A}^\prime)=1-\textup{P(A)}.[/tex]

The complement of an event of NOT YELLOW will be YELLOW.

Therefore, the probability of the complement of the event is

[tex]\textup{P(yellow)}=1-\textup{P(not yellow)}=1-\dfrac{4}{15}=\dfrac{11}{15}.[/tex]

Thus, the required probability is

[tex]\textup{P(yellow)}=\dfrac{11}{15}.[/tex]

Option (B) is correct.

ACCESS MORE
EDU ACCESS
Universidad de Mexico