The picture below shows a container that Rene uses to freeze water: A cylinder is shown with base diameter of 6 centimeters and the height as 8 centimeters. What is the minimum number of identical containers that Rene would need to make 2,000 cm3 of ice? (Use π = 3.14.) 27 9 14 20

Respuesta :

it would be 9.

2000/226.2 = 8.84 == 9

Answer:

9

Step-by-step explanation:

Given :  A cylinder is shown with base diameter of 6 centimeters and the height as 8 centimeters.

To Find:  What is the minimum number of identical containers that Rene would need to make 2,000 cubic cm of ice.

Solution :

Diameter of container = 6 cm

Radius = Diameter/2 = 6/2 = 3 cm

Height of container = 8 cm

Volume of cylinder = [tex]\pi r^{2} h[/tex]

Where r is the radius

h is the height.

So, volume of the container = [tex]\pi\times 3^{2} \times 8[/tex]

                                                = [tex]3.14\times 3^{2} \times 8[/tex]

                                                = [tex]226.08[/tex]

Rene would need to make 2,000 cubic cm of ice.

So, no. of containers required = [tex]\frac{\text{Volume of ice}}{\text{Volume of container}}[/tex]

                                                  = [tex]\frac{2000}{226.08}[/tex]

                                                  = [tex]8.84[/tex]  

So, no. of containers required = 8.84 ≈ 9.

Hence  the minimum number of identical containers that Rene would need to make 2,000 cubic cm of ice is 9                                              

                                               

ACCESS MORE
EDU ACCESS
Universidad de Mexico