Respuesta :
Van der Waals equation is as follows:
(P + a(n/V)²) * (V -nb) = n RT
Moles of H₂ is calculated by dividing 25 g by 2 (molecular weight of H₂) = 12.5 moles
Values of a and b are:
a = 0.02444 atm L² / mol
b = 0.0266 L / mol
(P + 0.02444 (12.5/1)²) * (1 -(12.5 *0.0266)) = 12.5 * 0.0821 * 293 K
If we solve this equation we get pressure of 412.29 atm
With ideal gas equation we get:
P V = n R T
P = n * R * T / V = (12.5 * 0.0821 * 293 / 1) = 300.69 atm
(P + a(n/V)²) * (V -nb) = n RT
Moles of H₂ is calculated by dividing 25 g by 2 (molecular weight of H₂) = 12.5 moles
Values of a and b are:
a = 0.02444 atm L² / mol
b = 0.0266 L / mol
(P + 0.02444 (12.5/1)²) * (1 -(12.5 *0.0266)) = 12.5 * 0.0821 * 293 K
If we solve this equation we get pressure of 412.29 atm
With ideal gas equation we get:
P V = n R T
P = n * R * T / V = (12.5 * 0.0821 * 293 / 1) = 300.69 atm
Answer:
1. 412atm
2. 300atm
Explanation:
Hello,
1. In this case, Van der Waals equation is suitable to model the non-ideal behavior of hydrogen at the specified conditions:
[tex]P=\frac{RT}{v-b} -\frac{a}{v^2}[/tex]
At the specified conditions, we compute [tex]a[/tex], [tex]b[/tex] and [tex]v[/tex] as shown below:
[tex]a=\frac{27}{64}\frac{R^2Tc^2}{Pc} =\frac{27}{64}\frac{(0.082 \frac{atm*L}{mol*K})^2*(33.3K)^2}{12.83atm}=0.245atm\frac{L^2}{mol^2}\\\\b=\frac{1}{8}\frac{RTc}{Pc} =\frac{1}{8}\frac{(0.082 \frac{atm*L}{mol*K})*(33.3K)}{12.83atm}=0.0266\frac{L}{mol}\\ \\v=\frac{1.00L}{25.0gH_2*\frac{1molH_2}{2gH_2} } =0.08\frac{L}{mol}[/tex]
Thus, the pressure turns out into:
[tex]P=\frac{0.082 \frac{atm*L}{mol*K} *293.15K}{0.08\frac{L}{mol}-0.0266\frac{L}{mol}}-\frac{0.245atm\frac{L^2}{mol^2}}{(0.08\frac{L}{mol} )^2} =412atm[/tex]
2. In this section, the ideal gas equation is directly applied as shown below:
[tex]P=\frac{nRT}{V}=\frac{(25gH_2*\frac{1molH_2}{2gH_2} )(0.082 \frac{atm*L}{mol*K} )(293.15K)}{1.00L} \\P=300atm[/tex]
Best regards.