Find the volume of a square pyramid with base edges of 48 cm and a slant
height of 26 cm.
A.
11,520 cm3

B.
23,040 cm3

C.
7,680 cm3

D.
768 cm3

Respuesta :

Firstly, write the stuffs you already know.

Length = Width = 48, Slant Height = 26.
You need to find Height of the pyramid.

Using Pythagoras Theory:
h = ✓26^2 - (48/2)^2
h = 10

Now apply the pyramid volume formula;
Volume = (Length×Width×Height)/3
Thus, v = (48^2 × 10)/3
v = 7680 cm^3

Answer:

Option C is the correct answer.

Step-by-step explanation:

Let the base edge be b, slant height be s and perpendicular height be h.

We have

               [tex]s^2=h^2+\left ( \frac{b}{2}\right )^2[/tex]

Here s = 26 cm and b = 48 cm

Substituting

      [tex]26^2=h^2+\left ( \frac{48}{2}\right )^2\\\\h^2=100\\\\h=10cm[/tex]

[tex]\texttt{Volume of square pyramid, }V=\frac{1}{3}b^2h[/tex]

Substituting

          [tex]V=\frac{1}{3}\times 48^2\times 10=7680cm^3[/tex]

Option C is the correct answer.

                   

ACCESS MORE
EDU ACCESS
Universidad de Mexico