Respuesta :
Firstly, write the stuffs you already know.
Length = Width = 48, Slant Height = 26.
You need to find Height of the pyramid.
Using Pythagoras Theory:
h = ✓26^2 - (48/2)^2
h = 10
Now apply the pyramid volume formula;
Volume = (Length×Width×Height)/3
Thus, v = (48^2 × 10)/3
v = 7680 cm^3
Length = Width = 48, Slant Height = 26.
You need to find Height of the pyramid.
Using Pythagoras Theory:
h = ✓26^2 - (48/2)^2
h = 10
Now apply the pyramid volume formula;
Volume = (Length×Width×Height)/3
Thus, v = (48^2 × 10)/3
v = 7680 cm^3
Answer:
Option C is the correct answer.
Step-by-step explanation:
Let the base edge be b, slant height be s and perpendicular height be h.
We have
[tex]s^2=h^2+\left ( \frac{b}{2}\right )^2[/tex]
Here s = 26 cm and b = 48 cm
Substituting
[tex]26^2=h^2+\left ( \frac{48}{2}\right )^2\\\\h^2=100\\\\h=10cm[/tex]
[tex]\texttt{Volume of square pyramid, }V=\frac{1}{3}b^2h[/tex]
Substituting
[tex]V=\frac{1}{3}\times 48^2\times 10=7680cm^3[/tex]
Option C is the correct answer.