Respuesta :

The quadratic formula tells you the solution to
  ax² +bx +c = 0
is
  [tex]x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}[/tex]
Plugging in the values a=5, b=-8, c=5, you get
  [tex]x=\frac{8 \pm \sqrt{(-8)^{2}-4\cdot 5\cdot 5}}{2\cdot 5} = \frac{8 \pm \sqrt{-36}}{10} = \frac{4 \pm 3i}{5}[/tex]

Your solution is
  [tex]x=\frac{4-3i}{5},x=\frac{4+3i}{5}[/tex]

Answer:

[tex]x=\frac{8+\sqrt{-36} }{10}[/tex]

[tex]x=\frac{8-\sqrt{-36} }{10}[/tex]

Step-by-step explanation:

5x² - 8x + 5 = 0

[tex]x=\frac{-b±\sqrt{b^{2} -4ac} }{2a}[/tex]

Ignore the A before the ±, it wouldn't let me type it correctly.

a = 5

b = - 8

c = 5

[tex]x=\frac{-(-8)±\sqrt{-8^{2} -4((5)(5))} }{2(5)}[/tex]

[tex]x=\frac{8±\sqrt{64 -4((5)(5))} }{2(5)}[/tex]

[tex]x=\frac{8±\sqrt{64 -100} }{2(5)}[/tex]

[tex]x=\frac{8±\sqrt{-36} }{10}[/tex]

No solution because, you need the square root of a negative number. That isn't really possible.

[tex]x=\frac{8+\sqrt{-36} }{10}[/tex]

[tex]x=\frac{8-\sqrt{-36} }{10}[/tex]

ACCESS MORE
EDU ACCESS