Solve the following quadratic equation using the quadratic formula.

Answer:
[tex]x=\frac{8+\sqrt{-36} }{10}[/tex]
[tex]x=\frac{8-\sqrt{-36} }{10}[/tex]
Step-by-step explanation:
5x² - 8x + 5 = 0
[tex]x=\frac{-b±\sqrt{b^{2} -4ac} }{2a}[/tex]
Ignore the A before the ±, it wouldn't let me type it correctly.
a = 5
b = - 8
c = 5
[tex]x=\frac{-(-8)±\sqrt{-8^{2} -4((5)(5))} }{2(5)}[/tex]
[tex]x=\frac{8±\sqrt{64 -4((5)(5))} }{2(5)}[/tex]
[tex]x=\frac{8±\sqrt{64 -100} }{2(5)}[/tex]
[tex]x=\frac{8±\sqrt{-36} }{10}[/tex]
No solution because, you need the square root of a negative number. That isn't really possible.
[tex]x=\frac{8+\sqrt{-36} }{10}[/tex]
[tex]x=\frac{8-\sqrt{-36} }{10}[/tex]