Respuesta :
Convert to spherical coordinates, using
[tex]x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi[/tex]
[tex]y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi[/tex]
[tex]z(\rho,\theta,\varphi)=\rho\cos\varphi[/tex]
The volume element is
[tex]\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
In spherical coordinates, the two given spheres are obtained by setting [tex]\rho=3[/tex] and [tex]\rho=4[/tex]. So the integral evaluates to
[tex]\displaystyle\iiint_{\mathcal E}(x^2+y^2)\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=3}^{\rho=4}\rho^2\sin^2\varphi(\rho^2\sin\varphi)\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]=\dfrac{6248\pi}{15}[/tex]
[tex]x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi[/tex]
[tex]y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi[/tex]
[tex]z(\rho,\theta,\varphi)=\rho\cos\varphi[/tex]
The volume element is
[tex]\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
In spherical coordinates, the two given spheres are obtained by setting [tex]\rho=3[/tex] and [tex]\rho=4[/tex]. So the integral evaluates to
[tex]\displaystyle\iiint_{\mathcal E}(x^2+y^2)\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=3}^{\rho=4}\rho^2\sin^2\varphi(\rho^2\sin\varphi)\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]=\dfrac{6248\pi}{15}[/tex]
The volume between the spheres is given by the triple integration of (x² + y²) is 6248π/15.
What is an area bounded by the curve?
When the two curves intersect then they bound the region is known as the area bounded by the curve.
The spheres x² + y² + z² = 9 and x² + y² + z² = 16.
Convet into shperical coordinate
[tex]x(\rho , \theta , \phi) = \rho \cos \theta \sin \phi\\\\y \rho , \theta , \phi) = \rho \sin \theta \cos \phi \\\\z(\rho , \theta , \phi) = \rho \cos \phi[/tex]
Then the volume of the element will be
[tex]\rm dV = \rho ^2 \sin \phi \ d \rho \ \d\theta \ d\phi[/tex]
Then we have
[tex]\rightarrow \int \int \int_{\epsilon} (x^2 + y^2 ) dV \\\\\\\rightarrow \int _{\phi = 0}^{\phi = \pi} \int _{\theta = 0}^{\theta = 2\pi} \int _{\rho = 3}^{\rho = 4} \rho ^2 \sin^2 \phi (\rho ^2 \sin \phi) d\rho \ d\theta \ d\phi\\\\\\\rightarrow \dfrac{6248 \pi}{15}[/tex]
More about the area bounded by the curve link is given below.
https://brainly.com/question/24563834