Respuesta :

For the work-energy theorem, the work done to accelerate the proton is equal to the variation of kinetic energy of the proton:
[tex]W= \Delta K = K_f - K_i =K_f[/tex]
where [tex]K_i[/tex] is the initial kinetic energy, which is zero because initially the proton is at rest.

We need to find the kinetic energy of the proton: we can't use the classical formula [tex]K= \frac{1}{2} mv^2[/tex] since the proton is at relativistic speed. Therefore, we must use the relativistic formula:
[tex]K_f = \frac{mc^2}{\sqrt{1- \frac{v^2}{c^2} }}-mc^2 [/tex]
where 
m is the proton mass
v is its final speed
c is the speed of light

Substituting [tex]m=1.67 \cdot 10^{-27} kg[/tex], v=0.987 c and [tex]c=3 \cdot 10^8 m/s[/tex], we find
[tex]K_f = \frac{(1.67 \cdot 10^{-27} kg)(3 \cdot 10^8 m/s)^2}{\sqrt{1- \frac{(0.987 c)^2}{c^2} }} -(1.67 \cdot 10^{-27}kg)(3 \cdot 10^8 m/s)^2=[/tex]
[tex]=7.82 \cdot 10^{-10} J[/tex]
and this is equal to the work needed to accelerate the proton up to a speed of 0.987c.
ACCESS MORE
EDU ACCESS
Universidad de Mexico