Respuesta :
(a) after t minutes
If [tex]y(t)[/tex] is the amount of salt (in kg) after [tex]t[/tex] minutes, then [tex]y(0) = 0 \ (pure\ water)[/tex] and the total amount of liquid in the tank remains constant at 1000 L.
[tex]\displaystyle \frac{dy}{dt} \\ = \left( 0.05 \frac{\text{kg}}{\text{L}} \right) \left( 5 \frac{\text{L}}{\text{min}} \right) + \left( 0.04 \frac{\text{kg}}{\text{L}} \right)\left( 10 \frac{\text{L}}{\text{min}} \right) - \left( \frac{y(t)}{1000} \frac{\text{kg}}{\text{L}} \right)\left( 15\frac{\text{L}}{\text{min}} \right) \\ \\ = 0.25 + 0.40 - 0.015y = 0.65 - 0.015 y = \frac{130 - 3y}{200} \frac{\text{kg}}{\text{min}} [/tex]
[tex]\text{Hence, } \displaystyle \int \frac{dy}{130 - 3y} = \int\frac{dt}{200}[/tex]
and [tex]-\frac{1}{3}\ln|130 - 3y| = \frac{1}{200}t + C.[/tex]
Because [tex]y(0) = 0[/tex], we have [tex]-\frac{1}{3} \ln 130 = C[/tex]
so
[tex]-\frac{1}{3}\ln|130 - 3y| = \frac{1}{200}t -\frac{1}{3} \ln 130\ \Rightarrow \\ \\\ \ln|130 - 3y| = -\frac{3}{200}t + \ln 130 \ \Rightarrow \\ \\ |130 - 3y| = e^{-3t/200 + \ln 130} \ \Rightarrow \\ \\ |130 - 3y| = 130e^{-3t/200} [/tex]
Since [tex]y[/tex] is continuous, [tex]y(0) = 0[/tex], and the right-hand side is never zero, we deduce that [tex]130 - 3y[/tex] is always positive.
Thus, [tex]130 - y = 130e^{-3t/200}[/tex] and
[tex]y = \frac{130}{3}\left( 1 - e^{-3t/200}\right) \text{ kg}[/tex]
(b)
After one hour,
[tex]y = \frac{130}{3}\left( 1 - e^{-3 \cdot 60/200}\right) = \frac{130}{3}(1 - e^{-0.9} ) \approx 25.7 \text{ kg}[/tex]
If [tex]y(t)[/tex] is the amount of salt (in kg) after [tex]t[/tex] minutes, then [tex]y(0) = 0 \ (pure\ water)[/tex] and the total amount of liquid in the tank remains constant at 1000 L.
[tex]\displaystyle \frac{dy}{dt} \\ = \left( 0.05 \frac{\text{kg}}{\text{L}} \right) \left( 5 \frac{\text{L}}{\text{min}} \right) + \left( 0.04 \frac{\text{kg}}{\text{L}} \right)\left( 10 \frac{\text{L}}{\text{min}} \right) - \left( \frac{y(t)}{1000} \frac{\text{kg}}{\text{L}} \right)\left( 15\frac{\text{L}}{\text{min}} \right) \\ \\ = 0.25 + 0.40 - 0.015y = 0.65 - 0.015 y = \frac{130 - 3y}{200} \frac{\text{kg}}{\text{min}} [/tex]
[tex]\text{Hence, } \displaystyle \int \frac{dy}{130 - 3y} = \int\frac{dt}{200}[/tex]
and [tex]-\frac{1}{3}\ln|130 - 3y| = \frac{1}{200}t + C.[/tex]
Because [tex]y(0) = 0[/tex], we have [tex]-\frac{1}{3} \ln 130 = C[/tex]
so
[tex]-\frac{1}{3}\ln|130 - 3y| = \frac{1}{200}t -\frac{1}{3} \ln 130\ \Rightarrow \\ \\\ \ln|130 - 3y| = -\frac{3}{200}t + \ln 130 \ \Rightarrow \\ \\ |130 - 3y| = e^{-3t/200 + \ln 130} \ \Rightarrow \\ \\ |130 - 3y| = 130e^{-3t/200} [/tex]
Since [tex]y[/tex] is continuous, [tex]y(0) = 0[/tex], and the right-hand side is never zero, we deduce that [tex]130 - 3y[/tex] is always positive.
Thus, [tex]130 - y = 130e^{-3t/200}[/tex] and
[tex]y = \frac{130}{3}\left( 1 - e^{-3t/200}\right) \text{ kg}[/tex]
(b)
After one hour,
[tex]y = \frac{130}{3}\left( 1 - e^{-3 \cdot 60/200}\right) = \frac{130}{3}(1 - e^{-0.9} ) \approx 25.7 \text{ kg}[/tex]
A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of 5 L/min. The amount of salt in
the tank after 1 minute and after 1 hour is [tex]\mathbf{ \dfrac{130}{3} (1- e^{\dfrac{-3t}{200}} ) \ kg}[/tex] and 25.715 kg respectively.
Let make an assumption that:
- x should represent the amount of salt after (t) minutes
- Now, we can posit that at x(0) = 0, the tank only contains only pure water.
Now, the rate of change of the salt amount can be expressed as:
[tex]\mathbf{\dfrac{dx}{dt}= \ rate_{(in)} -\ rate_{( out )}}[/tex]
The rate of flow of water in the inlet:
= (mass × rate of the salt in the tank) + (mass of the brine × rate)
= (0.05 kg × 5 L/min ) + (0.04 kg × 10 L/min)
= 0.25 kg/min + 0.4 kg/min
= 0.65 kg/min
The rate flow of water at the outlet can be computed as:
[tex]\mathbf{= \dfrac{(x)}{1000} \times 15 \ kg/min}[/tex]
[tex]\mathbf{= \dfrac{(x)}{200} \times 3 \ kg/min}[/tex]
[tex]\mathbf{= \dfrac{(3x)}{200} \ kg/min}[/tex]
Recall that: the rate of change of the salt amount can be expressed as: [tex]\mathbf{\dfrac{dx}{dt}= \ rate_{(in)} -\ rate_{( out )}}[/tex]
∴
[tex]\mathbf{\dfrac{dx}{dt}=0.65 - \dfrac{3x}{200} }[/tex]
By differentiation;
[tex]\mathbf{\dfrac{dx}{dt}= \dfrac{1}{200} }[/tex]
[tex]\mathbf{\to 200\dfrac{dx}{dt}}[/tex]
∴
[tex]\mathbf{\dfrac{200}{(130-3x)}\ dx = dt}[/tex]
By using integration on two both sides, we have:
[tex]\mathbf{\int \dfrac{200}{(130-3x)}\ dx =\int dt}[/tex]
[tex]\mathbf{\dfrac{-200}{(3)} \ In \ \Big| 130-3x \Big| =t+C}[/tex]
By cross multiply
[tex]\mathbf{ (200)\ In \ \Big| 130-3x \Big| = 3t+3C}[/tex]
[tex]\mathbf{ \ In \ \Big| 130-3x \Big| = \dfrac{3t + 3C}{(200)}}[/tex]------------ (1)
At the time when t = 0, we know that x is also = 0
∴
[tex]\mathbf{ \ In \ \Big| 130-3(0)\Big| = \dfrac{3t + 3C}{(200)}}[/tex]
[tex]\mathbf{ -In \ 130 = \dfrac{ 3C}{(200)}}[/tex]
[tex]\mathbf{ In \ 130 = -\dfrac{ 3C}{(200)}}[/tex]
[tex]\mathbf{C= \dfrac{- 200}{(3)} In \ 130 }[/tex]
Replacing the value of C into equation (1);
[tex]\mathbf{ \ In \ \Big| 130-3x \Big| = \dfrac{3t }{(200)}-In(130)}[/tex]
[tex]\mathbf{ \ In \ \Big| 130-3x \Big| = In(130)-\dfrac{3t }{(200)}}[/tex]
Dividing through by ㏑
[tex]\mathbf{ \Big| 130-3x \Big| = 130 e^{-\dfrac{3t }{(200)}}}[/tex]
Making (x) the subject of the formula, we have:
[tex]\mathbf{ x= \dfrac{130}{3} (1- e^{\dfrac{-3t}{200}} ) \ kg}[/tex]
After one hour, the amount of salt in the tank is:
[tex]\mathbf{ x= \dfrac{130}{3} (1- e^{\dfrac{-3(60)}{200}} ) \ kg}[/tex]
[tex]\mathbf{ x= \dfrac{130}{3} (1- e^{\dfrac{-180}{200}} ) \ kg}[/tex]
[tex]\mathbf{ x= \dfrac{130}{3} (1- e^{-0.9} ) \ kg}[/tex]
[tex]\mathbf{ x= \dfrac{130}{3} (0.59344 ) \ kg}[/tex]
[tex]\mathbf{ x=25.715 \ kg}[/tex]
Therefore, we can conclude that the amount of salt in the tank after t minute and 1 hour is [tex]\mathbf{ \dfrac{130}{3} (1- e^{\dfrac{-3t}{200}} ) \ kg}[/tex] and 25.715 kg respectively.
Learn more about integration here:
https://brainly.com/question/18125359?referrer=searchResults