Respuesta :
Explanation:
It is given that,
Capacitance of the capacitor, [tex]C=4\ \mu F=4\times 10^{-6}\ F[/tex]
Voltage, V = 12 V
(a) The charge stored per unit potential difference is called capacitance of the capacitor.
[tex]C=\dfrac{Q}{V}[/tex]
[tex]Q=C\times V[/tex]
[tex]Q=4\times 10^{-6} \times 12[/tex]
[tex]Q=4.8\times 10^{-5}\ C[/tex]
(b) Voltage, V = 1.5 V
The electrical potential energy stored in the capacitor is given by :
[tex]U=\dfrac{1}{2}CV^2[/tex]
[tex]U=\dfrac{1}{2}\times 4\times 10^{-6}\times (1.5)^2[/tex]
[tex]U=4.5\times 10^{-6}\ V[/tex]
Hence, this is the required solution.
A. The charge on each plate of the capacitor is 4.8×10¯⁵ C
B. The energy stored stored on the capacitor is 4.5×10¯⁶ J
A. Determination of the charge
•Capacitor (C) = 4 µF = 4×10¯⁶
•Voltage (V) = 12 V
•Charge (Q) =?
Q = CV
Q = 4×10¯⁶ × 12
Q = 4.8×10¯⁵ C
B. Determination of the energy stored in the capacitor.
•Voltage (V) = 1.5 V
•Capacitor (C) = 4 µF = 4×10¯⁶
•Energy (E) =?
E = ½CV²
E = ½ × 4×10¯⁶ × 1.5²
E = 2×10¯⁶ × 2.25
E = 4.5×10¯⁶ J
Learn more about energy stored in a capacitor:
https://brainly.com/question/14739936