Answer:
Mrs Lunette can choose 816 combinations of 3 students.
Step-by-step explanation:
We can use the combination formula to find the number of combinations Mrs Lunette has,
Number of combinations = [tex]\frac{n!}{k!(n-k)!}[/tex]
Where,
[tex]n[/tex] is the total number of students.
[tex]k[/tex] is how many students can be chosen at a time.
Now we can substitute the values to the above equation,
Number of combinations = [tex]\frac{18!}{3!(18-3)!}[/tex]
=[tex]\frac{18!}{3!(15)!}[/tex]
=[tex]\frac{18*17*16}{3!}[/tex]
=[tex]\frac{18*17*16}{3*2*1}[/tex]
=[tex]\frac{3*17*16}{1}[/tex]
=[tex]816[/tex]
Mrs Lunette can choose 816 combinations of 3 students.