The general form of the equation of a circle is x^2+y^2−8x+6y+21=0.



What are the coordinates of the center of the circle?



Enter your answer in the boxes.

(_____,______)

Respuesta :

the anwser is (4,-3)

Answer:

The coordinates of the center of the circle are (4,-3).

Step-by-step explanation:

The general form of the equation of a circle is

[tex]x^2+y^2-8x+6y+21=0[/tex]

It can be written as

[tex](x^2-8x)+(y^2+6y)+21=0[/tex]

Add and subtract [tex](\frac{-b}{2a})^2[/tex] in each parenthesis, to make perfect squares.

For first parenthesis,

[tex](\frac{-b}{2a})^2=(frac{8}{2(1)})^2=(4)^2=16[/tex]

For second parenthesis,

[tex](\frac{-b}{2a})^2=(frac{-6}{2(1)})^2=(-3)^2=9[/tex]

[tex](x^2-8x+16-16)+(y^2+6y+9-9)+21=0[/tex]

[tex](x^2-8x+16)+(y^2+6y+9)+21-16-9=0[/tex]

[tex](x-4)^2+(y+3)^2-4=0[/tex]

[tex](x-4)^2+(y+3)^2=4[/tex]                  .... (1)

The standard form of a circle is

[tex](x-h)^2+(y+k)^2=r^2[/tex]              .... (2)

Where, (h,k) is center of the circle and r is radius.

On comparing (1) and (2) we get,

[tex]h=4,k=-3,r=2[/tex]

Therefore the coordinates of the center of the circle are (4,-3).

ACCESS MORE