Respuesta :
Answer:
The coordinates of the center of the circle are (4,-3).
Step-by-step explanation:
The general form of the equation of a circle is
[tex]x^2+y^2-8x+6y+21=0[/tex]
It can be written as
[tex](x^2-8x)+(y^2+6y)+21=0[/tex]
Add and subtract [tex](\frac{-b}{2a})^2[/tex] in each parenthesis, to make perfect squares.
For first parenthesis,
[tex](\frac{-b}{2a})^2=(frac{8}{2(1)})^2=(4)^2=16[/tex]
For second parenthesis,
[tex](\frac{-b}{2a})^2=(frac{-6}{2(1)})^2=(-3)^2=9[/tex]
[tex](x^2-8x+16-16)+(y^2+6y+9-9)+21=0[/tex]
[tex](x^2-8x+16)+(y^2+6y+9)+21-16-9=0[/tex]
[tex](x-4)^2+(y+3)^2-4=0[/tex]
[tex](x-4)^2+(y+3)^2=4[/tex] .... (1)
The standard form of a circle is
[tex](x-h)^2+(y+k)^2=r^2[/tex] .... (2)
Where, (h,k) is center of the circle and r is radius.
On comparing (1) and (2) we get,
[tex]h=4,k=-3,r=2[/tex]
Therefore the coordinates of the center of the circle are (4,-3).