Respuesta :

Consider this option.
Ver imagen evgeniylevi

The degree 3 Taylor polynomial t3(x) of function f(x) is [tex](\frac{-343}{1024} ){(x-2)^{3} }[/tex].      

What is a Taylor series?

Taylor series is a power series that gives the expansion of a function f (x) in the neighborhood of a point, provided that in the neighborhood the function is continuous, all its derivatives exist, and the series converges to the function.

For the given situation,

The function is f(x)=(7x+2)^3/2 at a=2.

The Taylor series expansion is

[tex]{\displaystyle f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+{\frac {f'''(a)}{3!}}(x-a)^{3}+\cdots }[/tex]

Here t3(x) = [tex]{\frac {f'''(a)}{3!}}(x-a)^{3}[/tex]

Now, [tex]{f'(x)}=(7)(\frac{3}{2} )(7x+2)^{\frac{1}{2} }[/tex]

⇒ [tex]{f'(x)}=(\frac{21}{2} )(7x+2)^{\frac{1}{2} }[/tex]

[tex]{f''(x)}=(7)(\frac{21}{2} )(\frac{1}{2}) (7x+2)^{\frac{-1}{2} }[/tex]

⇒ [tex]{f''(x)}=(\frac{147}{4} ) (7x+2)^{\frac{-1}{2} }[/tex]

[tex]{f'''(x)}=(\frac{147}{4} ) (\frac{-1}{2} )(7x+2)^{\frac{-3}{2} }[/tex]

⇒ [tex]{f'''(x)}=(\frac{-1029}{8} )(7x+2)^{\frac{-3}{2} }[/tex]

Then, [tex]{f'''(2)}=(\frac{-1029}{8} )(7(2)+2)^{\frac{-3}{2} }[/tex]

⇒ [tex]{f'''(2)}=(\frac{-1029}{8} )(16)^{\frac{-3}{2} }[/tex]

⇒ [tex]{f'''(2)}=(\frac{-1029}{8} )(\frac{1}{64} )[/tex]

⇒ [tex]{f'''(2)}=(\frac{-1029}{512} )[/tex]

Thus,  t3(x) = [tex]{\frac {f'''(2)}{3!}}(x-2)^{3}[/tex]

⇒ [tex](\frac{-1029}{512} )\frac{(x-2)^{3} }{6}[/tex]

⇒ [tex](\frac{-343}{1024} ){(x-2)^{3} }[/tex]

Hence we can conclude that the degree 3 Taylor polynomial t3(x) of function f(x) is [tex](\frac{-343}{1024} ){(x-2)^{3} }[/tex].

Learn more about Taylor series here

https://brainly.com/question/13391269

#SPJ3

ACCESS MORE