Respuesta :
Answer is 14 7/8. If you want steps, comment on my answer.

Answer:
The weight of third bundle is [tex]\frac{119}{8}=14\frac{7}{8}[/tex]
Step-by-step explanation:
Given : John has 3 bundles of wood weighing a total of 35 3/4 pounds. Two of the bundles weigh 12 3/8 pounds and 8 1/2 pounds.
To find : How much does the third bundle weigh?
Solution :
Let the third bundle weight be x.
The total weight of 3 bundles of wood is
[tex]35\frac{3}{4}=\frac{143}{4}\text{ pounds}[/tex]
Two of the bundles weigh
[tex]12\frac{3}{8}=\frac{99}{8}\text{ pounds}[/tex] and
[tex]8\frac{1}{2}=\frac{17}{2}\text{ pounds}[/tex]
Total weight of two bundles is
[tex]\frac{99}{8}+\frac{17}{2}=\frac{99+68}{8}=\frac{167}{8}[/tex]
Total weight = total weight of two bundles + third bundle
[tex]\frac{143}{4}=\frac{167}{8}+x[/tex]
[tex]x=\frac{143}{4}-\frac{167}{8}[/tex]
[tex]x=\frac{143}{4}-\frac{167}{8}[/tex]
[tex]x=\frac{286-167}{8}[/tex]
[tex]x=\frac{119}{8}[/tex]
Therefore, The weight of third bundle is [tex]\frac{119}{8}=14\frac{7}{8}[/tex]