Respuesta :

to find the inverse
1. replace f(x) or g(x) or f(n) with y
2. switch places of x and y
3. solve for y
4. replace y with f⁻¹(x) or g⁻¹(x) or f⁻¹(n)



1.
g(x)=3+(x-1)^3
replace
y=3+(x-1)^3
switch
x=3+(y-1)^3
solve
x=3+(y-1)^3
subtract 3
x-3=(y-1)^3
cube root both sides
[tex] \sqrt[3]{x-3} [/tex]=y-1
add 1
[tex] \sqrt[3]{x-3} [/tex]+1=y
switch y with g⁻¹(x)
g⁻¹(x)=[tex] \sqrt[3]{x-3} [/tex]+1





4. f(x)=x^3+2
replace with y
y=x^3+2
switch x and y
x=y^3+2
solve for y
x=y^3+2
subtract 2
x-2=y^3
cube roo both sides
[tex] \sqrt[3]{x-2} [/tex]=y
replace with f⁻¹(x)
f⁻¹(x)=[tex] \sqrt[3]{x-2} [/tex]



5.
f(n)=5[tex] \sqrt{-n+1/2} [/tex]
replace
y=5[tex] \sqrt{-n+1/2} [/tex]
switch n and y
n=5[tex] \sqrt{-y+1/2} [/tex]
solve for y
n=5[tex] \sqrt{-y+1/2} [/tex]
divide both sides by 5
n/5=n=[tex] \sqrt{-y+1/2} [/tex]
square both sides
[tex] \frac{n^2}{25} [/tex]=-y+1/2
subtract 1/2 from both sides
[tex] \frac{n^2}{25} [/tex]-[tex] \frac{1}{2} [/tex]=-y
multiply both sides by -1
-[tex] \frac{n^2}{25} [/tex]+[tex] \frac{1}{2} [/tex]=y
replace with f⁻¹(n)
f⁻¹(n)=-[tex] \frac{n^2}{25} [/tex]+[tex] \frac{1}{2} [/tex]



1.  g⁻¹(x)=[tex] \sqrt[3]{x-3} [/tex]+1
4.  f⁻¹(x)=[tex] \sqrt[3]{x-2} [/tex]
5.  f⁻¹(n)=-[tex] \frac{n^2}{25} [/tex]+[tex] \frac{1}{2} [/tex]