Solve the following quadratic equation using the quadratic formula.

Write the solutions in the following form, where r, s, and t are integers, and the fractions are in simplest form.

Solve the following quadratic equation using the quadratic formula Write the solutions in the following form where r s and t are integers and the fractions are class=

Respuesta :

5x^2-8x+5=0
ax^2+bx+c=0; a=5, b=-8, c=5
Quadratic Formula:
x=[-b+-sqrt(b^2-4ac)]/(2a)
x=[-(-8)+-sqrt( (-8)^2-4(5)(5) )] / [(2)(5) ]
x=[ 8+-sqrt(64-100)] / 10
x=[ 8+-sqrt(-36)] / 10
x=[8+-sqrt( (36)*(-1)) ] /10
x=[8+-sqrt(36)*sqrt(-1)] / 10
x=(8+-6i) / 10
x=(8/2+-6i/2) / (10/2)
x=(4+-3i)/5
x1=(4-3i)/5
x2=(4+3i)/5

Answers:
x=(4-3i)/5  ,  x=(4+3i)/5

Answer:

[tex]x=\frac{4-3i}{5} x= \frac{4+3i}{5}[/tex]

Step-by-step explanation:

Follow the quadratic formula