Answer:
[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i)).[/tex]
Step-by-step explanation:
First, find the roots of the polynomial [tex]x^2-8x+19:[/tex]
[tex]D=(-8)^2-4\cdot 19=64-76=-12.[/tex]
Since [tex]i^2=-1,[/tex] then [tex]D=-12=12i^2.[/tex]
So,
[tex]x_{1,2}=\dfrac{-(-8)\pm \sqrt{12i^2}}{2}=\dfrac{8\pm 2\sqrt{3}i}{2}=4\pm \sqrt{3}i.[/tex]
Now the polynomial [tex]x^2-8x+19[/tex] is equivelent to
[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i)).[/tex]