Respuesta :
Balance Chemical equation is as follow,
3NaAlO₂ + 6HF → Na₃AlF₆ + 3H₂O + Al₂O₃
According to this equation,
209.94 g of Na₃AlF₆ is produced by reacting = 245.91 g of NaAlO₂
So,
5010 g of Na₃AlF₆ will be produced by reacting = X grams of NaAlO₂
Solving for X,
X = (5010 g × 245.91 g) ÷ 209.94 g
X = 5868 g
Or,
X = 5.868 Kg of NaAlO₂
3NaAlO₂ + 6HF → Na₃AlF₆ + 3H₂O + Al₂O₃
According to this equation,
209.94 g of Na₃AlF₆ is produced by reacting = 245.91 g of NaAlO₂
So,
5010 g of Na₃AlF₆ will be produced by reacting = X grams of NaAlO₂
Solving for X,
X = (5010 g × 245.91 g) ÷ 209.94 g
X = 5868 g
Or,
X = 5.868 Kg of NaAlO₂
Answer:5.86 kg sodium aluminate is required to produce 5.01 kg of [tex]Na_3[AlF_6][/tex].
Explanation:
[tex]3NaAlO_2+6HF\rightarrow Na_3[AlF_6]+Al_2O_3+3H_2O[/tex]
Mass of [tex]Na_3[AlF_6]=5.01kg=5010g[/tex](1kg=1000g)
[tex]\text{Moles of }Na_3[AlF_6]=\frac{\text{Given mass of}Na_3[AlF_6]}{\text{molecular mass of}Na_3[AlF_6]}=\frac{5010 g}{ 209.94g/mol}=23.86 moles[/tex]
According to reaction, 1 mol of [tex]Na_3AlF_6[/tex] is obtained from 3 moles of [tex]NaAlO_2[/tex] , then 23.86 moles of [tex]Na_3AlF_6[/tex] will be obtained from: [tex]\frac{3}{1}\times (23.86 moles)=71.58[/tex] moles of [tex]NaAlO_2[/tex]
Mass of sodium aluminate is required to produce 5.01 kg of [tex]Na_3[AlF_6][/tex].
[tex]\text{Moles of }NaAlO_2=\frac{\text{Mass of}NaAlO_2}{\text{molecular mass of}NaAlO_2}=\frac{\text{Mass of}NaAlO_2}{81.97 g/mol}[/tex]
[tex]\text{Mass of}NaAlO_2}=\text{Moles of }NaAlO_2\times \text{molecular mass of}NaAlO_2}[/tex]
[tex]=71.58 mol\times 81.97 g/mol=5867.41g=5.86741 kg\approx5.86 kg[/tex]
5.86 kg sodium aluminate is required to produce 5.01 kg of [tex]Na_3[AlF_6][/tex].