Let's convert the final angular speed of the disk into rad/s:
[tex]\omega_f = 76 \frac{rev}{min} \cdot \frac{2 \pi rad/rev}{60 s/min}=7.96 rad/s [/tex]
while the initial angular speed is zero.
So, the angular acceleration of the disk is
[tex]\alpha = \frac{\omega_f - \omega_i }{t} = \frac{7.96 rad/s}{6.5 s}=1.22 rad/s^2 [/tex]
The radius of the disk is half the diameter: [tex]r= d/2 = 9 m/2 =4.5 m[/tex]
And so, the tangential acceleration is the angular acceleration times the radius:
[tex]a_t = \alpha r =(1.22 rad/s^2)(4.5 m)=5.49 m/s^2[/tex]