Respuesta :
[tex]\text{Consider the function, }\\ \\ f(x)=x^4+7, \ \ \text{ for }x\geq 0\\ \\ \text{let y=f(x). so in order to find the inverse first we interchange x and y.}\\ \text{so we have}\\ \\ x=y^4+7\\ \\ \text{and now we will solve for y again and that will give the inverse function.}\\ \text{so subtract 7 both sides, we get}[/tex]
[tex]x-7=y^4\\ \\ \text{now to get rid of exponent 4 from y, we take fourth root both sides.}\\ \text{so we get}\\ \\ \sqrt[4]{x-7}=y\\ \\ \text{hence the inverse function is }g(x)=\sqrt[4]{x-7}\\ \\ \text{we know that for a function its domain is the range of its inverse function}\\ \text{and the ragne of the function is domain of the inverse function.}\\ \\ \text{here observe that the range of f(x) is }f(x)\geq 7, \text{ domain of}[/tex]
[tex]\text{inerse function g(x) would be }x\geq 7\\ \\ \text{hence the inverse of the function is}\\ \\ g(x)=\sqrt[4]{x-7}, \ \ \ x\geq 7[/tex]
Answer:
[tex]\sqrt[4]{x-7}[/tex], x [tex]\geq[/tex] 7
Step-by-step explanation:
just took the test :D