Respuesta :
Answer:
The distance between the sun and the Jupiter is 5.2 AU.
Explanation:
It is given that,
The orbital time period of Jupiter, [tex]T=11.86\ years[/tex]
Since, [tex]1\ year=3.15\times 10^7\ s[/tex]
[tex]11.86\ year=3.74\times 10^8\ s[/tex]
We need to find the distance from the sun. It can be calculated using Kepler's third law. It is mathematically given by :
[tex]T^2=\dfrac{4\pi^2}{GM}a^3[/tex]
a = distance from sun
G universal gravitational constant
M is the mass of sun
[tex]a^3=\dfrac{T^2GM}{4\pi^2}[/tex]
[tex]a^3= \dfrac{(3.74\times 10^8\ s)^2\times 6.67\times 10^{-11}\times 1.98\times 10^{30}}{4\pi^2}[/tex]
[tex]a=7.763\times 10^{11}\ m[/tex]
Since, [tex]1\ AU=1.496\times 10^{11}\ m[/tex]
So, [tex]a=(\dfrac{7.763\cdot10^{11}}{1.496\cdot10^{11}})\ AU[/tex]
a = 5.189 AU
or
a = 5.2 AU
So, the distance from the sun is 5.2 AU. Hence, the correct option is (b).