Respuesta :
Here the base is 12x - 4 and the height is 3x + 2, so let's plug these into the formula:
[tex]\sf A=\dfrac{1}{2}bh[/tex]
[tex]\sf A=\dfrac{1}{2}(12x-4)(3x+2)[/tex]
First distribute 1/2 into the first parenthesis, we do this by multiplying it to every term:
[tex]\sf\dfrac{1}{2}\cdot 12x=6x[/tex]
[tex]\sf\dfrac{1}{2}\cdot -4=-2[/tex]
So we have:
[tex]\sf (6x-2)(3x+2)[/tex]
Distribute, multiply every term in the first parenthesis to every term in the second:
[tex]\sf 6x\cdot 3x=18x^2[/tex]
[tex]\sf 6x\cdot 2=12x[/tex]
[tex]\sf -2\cdot 3x=-6x[/tex]
[tex]\sf -2\cdot 2=-4[/tex]
So we're left with:
[tex]\sf 18x^2+12x-6x-4[/tex]
Combine like terms(12x - 6x = 6x):
[tex]\boxed{\sf 18x^2+6x-4}[/tex]
[tex]\sf A=\dfrac{1}{2}bh[/tex]
[tex]\sf A=\dfrac{1}{2}(12x-4)(3x+2)[/tex]
First distribute 1/2 into the first parenthesis, we do this by multiplying it to every term:
[tex]\sf\dfrac{1}{2}\cdot 12x=6x[/tex]
[tex]\sf\dfrac{1}{2}\cdot -4=-2[/tex]
So we have:
[tex]\sf (6x-2)(3x+2)[/tex]
Distribute, multiply every term in the first parenthesis to every term in the second:
[tex]\sf 6x\cdot 3x=18x^2[/tex]
[tex]\sf 6x\cdot 2=12x[/tex]
[tex]\sf -2\cdot 3x=-6x[/tex]
[tex]\sf -2\cdot 2=-4[/tex]
So we're left with:
[tex]\sf 18x^2+12x-6x-4[/tex]
Combine like terms(12x - 6x = 6x):
[tex]\boxed{\sf 18x^2+6x-4}[/tex]