To solve this we are going to use the formula: [tex]A=A_{0}( \frac{1}{2} )^{ \frac{t}{h} [/tex]
where
[tex]A[/tex] is the final amount aster a time [tex]t[/tex]
[tex]A_{0}[/tex] is the initial amount
[tex]t[/tex] is the time
[tex]h[/tex] is the half-life
We know for our problem that [tex]A=5[/tex], [tex]A_{0}=15[/tex], and [tex]n=285[/tex], so lets replace those values in our formula:
[tex]A=A_{0}( \frac{1}{2} )^{ \frac{t}{h} [/tex]
[tex]5=15( \frac{1}{2} )^{ \frac{t}{285} [/tex]
Since [tex]t[/tex] is the exponent, we are going to use logarithms to find its value:
[tex]5=15( \frac{1}{2} )^{ \frac{t}{285} [/tex]
[tex]( \frac{1}{2} )^{ \frac{t}{285}}= \frac{5}{15} [/tex]
[tex]( \frac{1}{2} )^{ \frac{t}{285}}= \frac{1}{3} [/tex]
[tex]ln( \frac{1}{2} )^{ \frac{t}{285}}= ln(\frac{1}{3})[/tex]
[tex] \frac{t}{285} ln( \frac{1}{2})=ln( \frac{1}{3} )[/tex]
[tex] \frac{t}{285}= \frac{ln( \frac{1}{3}) }{ln( \frac{1}{2} )} [/tex]
[tex]t= \frac{285ln( \frac{1}{3}) }{ln( \frac{1}{2}) } [/tex]
[tex]t=451.71[/tex]
We can conclude that the correct answer is: a. about 452 days.