→→→→→→Curtis builds a doghouse with base shaped like a cube and a roof shaped like a pyramid. The cube has an edge length of 3 1/2 feet. The height of the pyramid
is 5 feet. Find the volume of the doghouse rounded to the nearest tenth.

Respuesta :

 The volume of the cube is: V1 = L ^ 3 

 Where, L: length of the sides of the cube.

 Substituting we have: V1 = (3 + 1/2) ^ 3 V1 = 42,875 feet ^ 3

 The volume of the pyramid is: V2 = ((Ab) * (h)) / (3)

 Where, Ab: base area h: height

 Substituting we have: V2 = (((3 1/2) * (3 1/2)) * (5)) / (3) V2 = 20.41666667 feet ^ 3

 The volume of the house is the sum of both volumes: V1 + V2 = 42,875 feet ^ 3 + 20.41666667 feet ^ 3 V1 + V2 = 63.29166667 feet ^ 3 Nearest tenth: V1 + V2 = 63.3 feet ^ 3

 Answer: The volume of the doghouse rounded to the nearest tenth is: V1 + V2 = 63.3 feet ^ 3