Respuesta :
For this case the first thing to do is find the volume of the rectangular prism without the ring.
We have then:
[tex]v1 = (3) * (2) * (3.1) v1 = 18.6 cm ^ 3[/tex]
We now look for the volume of the rectangular prism with the ring:
[tex]v1 = (3) * (2) * (3.7) v2 = 22.2 cm ^ 3[/tex]
Then, the volume of the ring will be the difference in volumes.
We have then:
[tex]v = v2 - v1 v = 22.2 - 18.6 v = 3.6 cm ^ 3[/tex]
Answer:
The volume of John's ring in cubic centimeters is:
[tex]v = 3.6 cm ^ 3[/tex]
We have then:
[tex]v1 = (3) * (2) * (3.1) v1 = 18.6 cm ^ 3[/tex]
We now look for the volume of the rectangular prism with the ring:
[tex]v1 = (3) * (2) * (3.7) v2 = 22.2 cm ^ 3[/tex]
Then, the volume of the ring will be the difference in volumes.
We have then:
[tex]v = v2 - v1 v = 22.2 - 18.6 v = 3.6 cm ^ 3[/tex]
Answer:
The volume of John's ring in cubic centimeters is:
[tex]v = 3.6 cm ^ 3[/tex]
The volume of John's ring in cubic centimeters is [tex]3.6 \rm \ cm^3[/tex].
What is the volume of the ring?
The length of the rectangular prism is given by;
[tex]\rm Volume \ of \ prism =length \times breadth \times height[/tex]
The volume of the rectangular prism without the ring is;
[tex]\rm V_1=3 \times 2 \times 3.1\\\\V_1=18.6[/tex]
The volume of the rectangular prism with the ring is;
[tex]\rm V_2=3 \times 2 \times 3.7\\\\V_2=22.2[/tex]
The volume of John's ring in cubic centimeters is;
[tex]\rm V_2-V_1=22.2-18.6=3.6\\\\[/tex]
Hence, the volume of John's ring in cubic centimeters is [tex]3.6 \rm \ cm^3[/tex].
To know more about rectangular prism click the link given below.
https://brainly.com/question/13127128
#SPJ3