Respuesta :

Given that BC=12 cm and tan C=0.583, the value of the hypotenuse will be given as follows:
BC is the adjacent, the height AB will be given by
AB/BC=tan C
thus
AB/12=0.583
AB=12*0.583
AB=6.996
hence using Pythagorean theorem:
c^2=b^2+a^2
thus;
c^2=6.996^2+12^2
c^2=192.944016
c=13.890~14 cm (to the nearest centimeter)
We have the following trigonometric relationship:
 tan c = AB / BC
 We cleared AB:
 AB = BC * tan c
 Substituting values:
 AB = (12) * (0.583)
 AB = 6,996
 We now look for the hypotenuse using the Pythagorean theorem:
 hypotenuse = root ((AB) ^ 2 + (BC) ^ 2)
 Substituting values:
 hypotenuse = root ((6,996) ^ 2 + (12) ^ 2)
 hypotenuse = 13.9 cm
 Answer:
 
The length of the hypotenuse, to the nearest tenth of a centimeter is:
 
hypotenuse = 13.9 cm