Respuesta :

The graph is
[tex]y = { \{x}^{2} + 2 \: . \: x \leqslant 1 \\ { \{ - x} + 2 \: . \: x > 1[/tex]
Sorry - I'm not really sure how to format the function properly, the '.' stands for a comma

Answer:

[tex]y=\left \{ {{x^2+2,\:x\:<\:1} \atop {-x+2,\:x\ge1}} \right.[/tex]

Step-by-step explanation:

The graph is a piece-wise function.

It is made up of a quadratic function and a linear function.  

The quadratic function is [tex]y=x^2+2[/tex] and the linear function is [tex]y=-x+2[/tex].


The graph of the quadratic function is defined on the  interval [tex]x\:<\:1[/tex] and the graph of the linear function is defined on the interval [tex]x\ge 1[/tex].


So in short, if [tex]\:x\:<\:1[/tex], then [tex]y=x^2+2[/tex], else, [tex]y=-x+2[/tex].


Writing these two functions as a single piece-wise function gives,

[tex]y=\left \{ {{x^2+2,\:x\:<\:1} \atop {-x+2,\:x\ge1}} \right.[/tex]


The correct answer is C.

ACCESS MORE
EDU ACCESS
Universidad de Mexico