Respuesta :
The numbers are irrational, so they can't be exactly written down
using only digits.
In exact form, they are
1 + √57
and
1 - √57 .
In rounded form, they are
8.54983
and
-6.54983 .
-x² + 2x - 56 = 0
Use the quadratic formula to get the roots:
[tex]x = \frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] where the equation is ax² + bx + c =0
[tex] \frac{-b \pm \sqrt{ b^2 -4( a)(c)} }{2(a)}\\\\ \frac{-2\pm \sqrt{2^2 -4(-1)(56)} }{2(-1)}\\ \\\frac{-2\pm \sqrt{228 } }{-2} = \frac{-2\pm \sqrt{4\times57 } }{-2} \\\\ = \frac{-2\pm 2\sqrt{57 } }{-2} \\\\ = \frac{-1\pm 1\sqrt{57 } }{-1} \\\\ =\boxed{\bf{ 1\pm \sqrt{57 } }}\\a[/tex]
The two numbers that add up to 2 and multiply to -56 are 1 + √57 and 1 - √57.
Use the quadratic formula to get the roots:
[tex]x = \frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] where the equation is ax² + bx + c =0
[tex] \frac{-b \pm \sqrt{ b^2 -4( a)(c)} }{2(a)}\\\\ \frac{-2\pm \sqrt{2^2 -4(-1)(56)} }{2(-1)}\\ \\\frac{-2\pm \sqrt{228 } }{-2} = \frac{-2\pm \sqrt{4\times57 } }{-2} \\\\ = \frac{-2\pm 2\sqrt{57 } }{-2} \\\\ = \frac{-1\pm 1\sqrt{57 } }{-1} \\\\ =\boxed{\bf{ 1\pm \sqrt{57 } }}\\a[/tex]
The two numbers that add up to 2 and multiply to -56 are 1 + √57 and 1 - √57.