which of the following expressions are equivalent to 2/x^8-y^8? choose all that apply
A.2/(x^4-y^4)*1/(x^4+y^4)
B.2/(x^4)^2-(y^4)^2
C.2/(x4-y^4)*1/(x^4-y^4)
D.1/(x^4-y^4)*1/(x^4+y^4)

Respuesta :

2/x^8-y^8 =2/(x^4-y^4)^2=2/(x^4-y^4) * 1/(x^4-y^4)

Answer:

Option A and B are correct

[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex]and  [tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]

Step-by-step explanation:

Using the identity rule:

[tex]x^2-y^2 = (x+y)(x-y)[/tex]

Given the expression:

[tex]\frac{2}{x^8-y^8}[/tex]

We can write this as:

[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex]

Apply the identity rules:

[tex]\frac{2}{(x^4-y^4)(x^4+y^4)}[/tex]

We can write this as:

[tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]

Therefore, the expressions which is equivalent to [tex]\frac{2}{x^8-y^8}[/tex] are:[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex] and  [tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]

ACCESS MORE
EDU ACCESS