Respuesta :
Answer:
Option A and B are correct
[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex]and [tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]
Step-by-step explanation:
Using the identity rule:
[tex]x^2-y^2 = (x+y)(x-y)[/tex]
Given the expression:
[tex]\frac{2}{x^8-y^8}[/tex]
We can write this as:
[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex]
Apply the identity rules:
[tex]\frac{2}{(x^4-y^4)(x^4+y^4)}[/tex]
We can write this as:
[tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]
Therefore, the expressions which is equivalent to [tex]\frac{2}{x^8-y^8}[/tex] are:[tex]\frac{2}{(x^4)^2-(y^4)^2}[/tex] and [tex]\frac{2}{x^4-y^4} \times \frac{1}{x^4+y^4}[/tex]