Respuesta :
A) 3, 8, 15, 24 is correct.
Letting x be the term number (position in the sequence), for the first term, we have:
2(1) + 1^2 = 2+1 = 3
For the second term:
2(2) + 2^2 = 4+4 = 8
Third term:
2(3) + 3^2 = 6+9 = 15
Fourth term:
2(4) + 4^2 = 8+16 = 24
Letting x be the term number (position in the sequence), for the first term, we have:
2(1) + 1^2 = 2+1 = 3
For the second term:
2(2) + 2^2 = 4+4 = 8
Third term:
2(3) + 3^2 = 6+9 = 15
Fourth term:
2(4) + 4^2 = 8+16 = 24
Answer:
A. [tex]3,8,15,24[/tex]
Step-by-step explanation:
The given expression is
[tex]2x+x^2[/tex]
So we can write the general rule for the sequence as
[tex]T_x=2x+x^2[/tex]
Recall that the domain of a sequence is the set of natural numbers.
Let us plug in some first few natural numbers to generate the sequence.
When [tex]x=1[/tex], we obtain,
[tex]T_1=2(1)+(1)^2[/tex]
[tex]\Rightarrow T_1=2+1[/tex]
[tex]\Rightarrow T_1=3[/tex]
When [tex]x=2[/tex], we obtain,
[tex]T_2=2(2)+(2)^2[/tex]
[tex]\Rightarrow T_2=4+4[/tex]
[tex]\Rightarrow T_2=8[/tex]
When [tex]x=3[/tex], we obtain,
[tex]T_3=2(3)+(3)^2[/tex]
[tex]\Rightarrow T_3=6+9[/tex]
[tex]\Rightarrow T_3=15[/tex]
When [tex]x=4[/tex], we obtain,
[tex]T_4=2(4)+(4)^2[/tex]
[tex]\Rightarrow T_4=8+16[/tex]
[tex]\Rightarrow T_424[/tex]
Therefore the number sequence produced by the given expression is,
[tex]3,8,15,24[/tex]
The correct answer is option A
