Which of the following number sequences could be produced by the expression 2x+x2? A. 3, 8, 15, 24 B. 1, 3, 5, 7 C. 1, -1, -3, -5 D. 2, 7, 14, 21

Respuesta :

A) 3, 8, 15, 24 is correct.

Letting x be the term number (position in the sequence), for the first term, we have:

2(1) + 1^2 = 2+1 = 3

For the second term:
2(2) + 2^2 = 4+4 = 8

Third term:
2(3) + 3^2 = 6+9 = 15

Fourth term:
2(4) + 4^2 = 8+16 = 24

Answer:

A. [tex]3,8,15,24[/tex]

Step-by-step explanation:

The given expression is

[tex]2x+x^2[/tex]


So we can write the general rule for the sequence as

[tex]T_x=2x+x^2[/tex]

Recall that the domain of a sequence is the set of natural numbers.


Let us plug in some first few natural numbers to generate the sequence.


When [tex]x=1[/tex], we obtain,

[tex]T_1=2(1)+(1)^2[/tex]

[tex]\Rightarrow T_1=2+1[/tex]

[tex]\Rightarrow T_1=3[/tex]


When [tex]x=2[/tex], we obtain,

[tex]T_2=2(2)+(2)^2[/tex]

[tex]\Rightarrow T_2=4+4[/tex]

[tex]\Rightarrow T_2=8[/tex]


When [tex]x=3[/tex], we obtain,

[tex]T_3=2(3)+(3)^2[/tex]

[tex]\Rightarrow T_3=6+9[/tex]

[tex]\Rightarrow T_3=15[/tex]


When [tex]x=4[/tex], we obtain,

[tex]T_4=2(4)+(4)^2[/tex]

[tex]\Rightarrow T_4=8+16[/tex]

[tex]\Rightarrow T_424[/tex]


Therefore the number sequence  produced by the given expression is,


[tex]3,8,15,24[/tex]


The correct answer is option A





RELAXING NOICE
Relax