The answer is choice D. The work shown below shows why this is the case.
[tex]\sqrt[5]{224x^{11}y^8} = \sqrt[5]{32*7*x^5*x^5*x*y^5*y^3}[/tex]
[tex]\sqrt[5]{224x^{11}y^8} = \sqrt[5]{32}*\sqrt[5]{7}*\sqrt[5]{x^5}*\sqrt[5]{x^5}*\sqrt[5]{x}*\sqrt[5]{y^5}*\sqrt[5]{y^3}[/tex]
[tex]\sqrt[5]{224x^{11}y^8} = 2*\sqrt[5]{7}*x*x*\sqrt[5]{x}*y*\sqrt[5]{y^3}[/tex]
[tex]\sqrt[5]{224x^{11}y^8} = 2x^2y*\sqrt[5]{7xy^3}[/tex]