write an equation of the line that passes through the given point and is parallel to the graph of the given equation.
(2,-1);y=5x-2. (0,-5);y=9x

Respuesta :

Question 1:

--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5

--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c

--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11

--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11

--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------

Question 2:

--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x 
Slope = 9 
Slope of the parallel line = 9

--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c

--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5

--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5

--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
ACCESS MORE