The initial volume of the silver cube is:
[tex]V=(2.5 m)^3 = 15.6 m^3[/tex]
The volumetric thermal expansion of an object of volume V is given by[tex]\Delta V =3 \alpha _L V \Delta T[/tex]
where [tex]\alpha_L[/tex] is the coefficient of thermal expansion and [tex]\Delta T[/tex] the temperature difference.
For silver, [tex]\alpha_L = 18.9 \cdot 10^{-6} m^{-1}K^{-1}[/tex], while the temperature difference in our problem is
[tex]\Delta T = 30^{\circ}-15^{\circ}=15^{\circ}=15 K[/tex]
So we can calculate the change in volume of the silver cube:
[tex]\Delta V = 3 (18.9 \cdot 10^{-6} m^{-1}K^{-1})(15.6 m^3)(15 K)=0.013 m[/tex]