Please help me understand this

Answer:
The value of x is 12.
The measure of ∠PQS is 71°.
The measure of ∠PQT is 142°.
The measure of ∠TQR is 41°.
Step-by-step explanation:
Given information: QS bisects ∠PQT, m∠SQT=(8x-25)°, m∠PQT=(9x+34)° and m∠SQR=112°.
QS bisects ∠PQT it means QS divides ∠PQT in two equal parts.
[tex]\angle PQS=\angle SQT[/tex] .... (1)
[tex]\angle SQT=\frac{1}{2}(\angle PQT)[/tex]
[tex]2\angle SQT=\angle PQT[/tex]
Substitute the value of each angle.
[tex]2(8x-25)=(9x+34)[/tex]
[tex]16x-50=9x+34[/tex]
Isolate variable terms.
[tex]16x-9x=50+34[/tex]
[tex]7x=84[/tex]
Divide both sides by 7.
[tex]x=12[/tex]
The value of x is 12.
From equation (1) we get
[tex]\angle PQS=\angle SQT=(8x-25)^{\circ}[/tex]
[tex]\angle PQS=(8(12)-25)^{\circ}[/tex]
[tex]\angle PQS=71^{\circ}[/tex]
The measure of ∠PQS is 71°.
[tex]m∠PQT=(9x+34)^{\circ}[/tex]
[tex]m∠PQT=(9(12)+34)^{\circ}[/tex]
[tex]m∠PQT=142^{\circ}[/tex]
The measure of ∠PQT is 142°.
[tex]m∠TQR=m\angle SQR-m\angle SQT[/tex]
[tex]m∠TQR=112^{\circ}-71^{\circ}[/tex]
[tex]m∠TQR=41^{\circ}[/tex]
The measure of ∠TQR is 41°.