Respuesta :
The frequency of the nth-harmonic is n times the fundamental frequency f1:
[tex]f_n = n f_1[/tex]
The first harmonic is the fundamental frequency: [tex]f_1 = 195 Hz[/tex], then the following harmonics are
[tex]f_2 = 2 f_1 = 2 \cdot 195 Hz = 390 Hz[/tex]
[tex]f_3 = 3 f_1 = 3 \cdot 195 Hz = 585 Hz[/tex]
[tex]f_4 = 4 f_1 = 4 \cdot 195 Hz = 780 Hz[/tex]
[tex]f_n = n f_1[/tex]
The first harmonic is the fundamental frequency: [tex]f_1 = 195 Hz[/tex], then the following harmonics are
[tex]f_2 = 2 f_1 = 2 \cdot 195 Hz = 390 Hz[/tex]
[tex]f_3 = 3 f_1 = 3 \cdot 195 Hz = 585 Hz[/tex]
[tex]f_4 = 4 f_1 = 4 \cdot 195 Hz = 780 Hz[/tex]
Answer:
A violin is a both ends fixed, and so successive harmonics are simply multiples of the fundamental:
Therefore, f1 = 440Hz (fundamental frequency)
f2 = 2f1 = 2 x 440 = 880 Hz
f3 = 3f1 = 3 x 440 = 1320 Hz
f4 = 4f1 = 4 x 440 = 1760 Hz