Respuesta :
[tex]\bf ~~~~~~~~~~~~\textit{internal division of a line segment}
\\\\\\
S(-9,-4)\qquad T(6,5)\qquad
\qquad \stackrel{\textit{ratio from S to T}}{2:1}
\\\\\\
\cfrac{S\underline{R}}{\underline{R} T} = \cfrac{2}{1}\implies \cfrac{S}{T} = \cfrac{2}{1}\implies 1S=2T\implies 1(-9,-5)=2(6,5)\\\\
-------------------------------[/tex]
[tex]\bf R=\left(\cfrac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \cfrac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\ -------------------------------\\\\ R=\left(\cfrac{(1\cdot -9)+(2\cdot 6)}{2+1}\quad ,\quad \cfrac{(1\cdot -5)+(2\cdot 5)}{2+1}\right) \\\\\\ R=\left(\cfrac{-9+12}{3}~~,~~\cfrac{-5+10}{3} \right)\implies R=\left(\cfrac{3}{3}~~,~~\cfrac{5}{3} \right) \\\\\\ R=\left(1~,~1\frac{2}{3} \right)[/tex]
[tex]\bf R=\left(\cfrac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \cfrac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\ -------------------------------\\\\ R=\left(\cfrac{(1\cdot -9)+(2\cdot 6)}{2+1}\quad ,\quad \cfrac{(1\cdot -5)+(2\cdot 5)}{2+1}\right) \\\\\\ R=\left(\cfrac{-9+12}{3}~~,~~\cfrac{-5+10}{3} \right)\implies R=\left(\cfrac{3}{3}~~,~~\cfrac{5}{3} \right) \\\\\\ R=\left(1~,~1\frac{2}{3} \right)[/tex]
Answer:
The coordinates of the point R are (1,2).
Step-by-step explanation:
Notice that we want to complete an internal division of the segment with endpoints [tex]S(x_1,y_1)[/tex] and [tex]T(x_2,y_2)[/tex], in a given proportion m:n. This means, to find a point [tex]R(x,y)[/tex] such that SR/RT = 1/2.
The formula to obtain the coordinates of the point [tex]R(x,y)[/tex] is:
[tex] (x,y) = \left( \frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n} \right) [/tex].
In our particular case [tex] m=2 [/tex], [tex] n=1 [/tex], [tex] (x_1,y_1) = (-9,-4) [/tex] and [tex] (x_2,y_2)=(6,5) [/tex]. Thus,
[tex] (x,y) = \left( \frac{2\cdot 6-9}{3}, \frac{2\cdot 5-4}{3}\right) = \left( \frac{3}{3},\frac{6}{3} \right) =(1,2) [/tex].