Respuesta :
convert Mg to grams
1g =1000mg what about 3.91 Mg
= 3.91mg x 1g/1000mg= 3.91 x10^-3 g
moles= mass/molar mass
that is 3.91 x10^-3g /99 g/mol=3.95 x10^-5moles
concentration= moles / vol in liters
that is 3.95 x10^-5/100 x1000= 3.94 x10^-4M
equation for dissociation of CUCl= CUCl----> CU^+ +Cl^-
Ksp=(CU+)(CI-)
that is (3.95 x10^-4)(3.95 x10^-4)
Ksp= 1.56 x10^-7
1g =1000mg what about 3.91 Mg
= 3.91mg x 1g/1000mg= 3.91 x10^-3 g
moles= mass/molar mass
that is 3.91 x10^-3g /99 g/mol=3.95 x10^-5moles
concentration= moles / vol in liters
that is 3.95 x10^-5/100 x1000= 3.94 x10^-4M
equation for dissociation of CUCl= CUCl----> CU^+ +Cl^-
Ksp=(CU+)(CI-)
that is (3.95 x10^-4)(3.95 x10^-4)
Ksp= 1.56 x10^-7
Answer : The value of [tex]K_{sp}[/tex] is [tex]1.56\times 10^{-7}[/tex]
Explanation :
First we have to calculate the mass of CuCl in 1 L or 1000 mL solution.
As, 100.0 mL of solution contains 3.91 mg of CuCl
So, 1000 mL of solution contains [tex]\frac{1000mL}{100.0mL}\times 3.91mg=39.1mg[/tex] of CuCl
The mass of CuCl = 39.1 mg = 0.0391 g
conversion used : (1 mg = 0.001 g)
Now we have to calculate the moles of CuCl.
[tex]\text{Moles of }CuCl=\frac{\text{Mass of }CuCl}{\text{Molar mass of }CuCl}[/tex]
Molar mass of CuCl = 99.00 g/mol
[tex]\text{Moles of }CuCl=\frac{0.0391g}{99.00g/mol}=3.95\times 10^{-4}mole[/tex]
Now we have to calculate the moles of [tex]Cu^+[/tex] and [tex]Cl^-[/tex] ion.
Moles of [tex]Cu^+[/tex] = Moles of [tex]Cl^-[/tex] = Moles of CuCl = [tex]3.95\times 10^{-4}mole[/tex]
Thus, the concentration of [tex]Cu^+[/tex] and [tex]Cl^-[/tex] ion in 1 L solution will be:
[tex][Cu^+][/tex] = [tex][Cl^-][/tex] = [tex]3.95\times 10^{-4}M[/tex]
Now we have to calculate the value of [tex]K_{sp}[/tex] for CuCl.
The solubility equilibrium reaction will be:
[tex]CuCl\rightleftharpoons Cu^{+}+Cl^{-}[/tex]
The expression for solubility constant for this reaction will be,
[tex]K_{sp}=[Cu^{+}][Cl^{-}][/tex]
[tex]K_{sp}=(3.95\times 10^{-4})\times (3.95\times 10^{-4})[/tex]
[tex]K_{sp}=1.56\times 10^{-7}[/tex]
Therefore, the value of [tex]K_{sp}[/tex] is [tex]1.56\times 10^{-7}[/tex]