What is the trigonometric ratio for sin C ?


Enter your answer, as a simplified fraction, in the boxes.

$
triangle A B C with right angle at B. B C equals 80. A C equals 82.

Respuesta :

Answer:

[tex]sin(C)=\frac{9}{41}[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

In the right triangle ABC

Find the measure of side AB applying the Pythagoras Theorem

[tex]AB^{2}=AC^{2} -BC^{2}[/tex]

substitute the values

[tex]AB^{2}=82^{2} -80^{2}[/tex]

[tex]AB^{2}=324[/tex]

[tex]AB=18\ units[/tex]

Find the sin(C)

we know that

The function sine of angle C is equal to divide the opposite side angle C by the hypotenuse

so

[tex]sin(C)=\frac{AB}{AC}[/tex]

substitute the values

[tex]sin(C)=\frac{18}{82}[/tex]

Simplify

[tex]sin(C)=\frac{9}{41}[/tex]

Ver imagen calculista

Answer:

The value of trigonometric ratio [tex]\sin C[/tex]   is [tex]\frac{9}{41}[/tex]

Step-by-step explanation:

Given : Triangle ABC with right angle at B and BC = 80 and AC = 82

We have to find the value of trigonometric ratio [tex]\sin C[/tex]  

Consider the given triangle ABC,

We first draw the given right angled triangle ABC.

Also, given  BC = 80 and AC = 82

We know, Trigonometric ratio sine gives relationship between perpendicular and hypotenuse.

That is [tex]\sin \theta=\frac{Perpendicular}{hypotenuse}[/tex]

Here, For [tex]\theta=C[/tex]  

Perpendicular = AB and hypotenuse = AC

We first find AB

Using Pythagoras theorem,

[tex]H^2=B^2+P^2[/tex]

H = 82, B = 80

Thus,

[tex]82^2=80^2+P^2[/tex]

Simplify, we have,

[tex]P^2=324[/tex]

Thus, P = 18

Thus, [tex]\sin C =\frac{18}{82}[/tex]

Thus, The value of trigonometric ratio [tex]\sin C[/tex]   is [tex]\frac{9}{41}[/tex]

 

Ver imagen athleticregina
ACCESS MORE