Respuesta :
Answer:
[tex]sin(C)=\frac{9}{41}[/tex]
Step-by-step explanation:
see the attached figure to better understand the problem
In the right triangle ABC
Find the measure of side AB applying the Pythagoras Theorem
[tex]AB^{2}=AC^{2} -BC^{2}[/tex]
substitute the values
[tex]AB^{2}=82^{2} -80^{2}[/tex]
[tex]AB^{2}=324[/tex]
[tex]AB=18\ units[/tex]
Find the sin(C)
we know that
The function sine of angle C is equal to divide the opposite side angle C by the hypotenuse
so
[tex]sin(C)=\frac{AB}{AC}[/tex]
substitute the values
[tex]sin(C)=\frac{18}{82}[/tex]
Simplify
[tex]sin(C)=\frac{9}{41}[/tex]

Answer:
The value of trigonometric ratio [tex]\sin C[/tex] is [tex]\frac{9}{41}[/tex]
Step-by-step explanation:
Given : Triangle ABC with right angle at B and BC = 80 and AC = 82
We have to find the value of trigonometric ratio [tex]\sin C[/tex]
Consider the given triangle ABC,
We first draw the given right angled triangle ABC.
Also, given BC = 80 and AC = 82
We know, Trigonometric ratio sine gives relationship between perpendicular and hypotenuse.
That is [tex]\sin \theta=\frac{Perpendicular}{hypotenuse}[/tex]
Here, For [tex]\theta=C[/tex]
Perpendicular = AB and hypotenuse = AC
We first find AB
Using Pythagoras theorem,
[tex]H^2=B^2+P^2[/tex]
H = 82, B = 80
Thus,
[tex]82^2=80^2+P^2[/tex]
Simplify, we have,
[tex]P^2=324[/tex]
Thus, P = 18
Thus, [tex]\sin C =\frac{18}{82}[/tex]
Thus, The value of trigonometric ratio [tex]\sin C[/tex] is [tex]\frac{9}{41}[/tex]
