Respuesta :

[tex]\bf z=\stackrel{r}{6}[cos(\stackrel{\theta }{315^o})+i~sin(\stackrel{\theta }{315^o})]\qquad \begin{cases} a=x=rcos(\theta )\\ b=y=rsin(\theta )\\ ----------\\ a=6cos(315^o)\\ \qquad 6\left( \frac{\sqrt{2}}{2} \right)\\ \qquad 3\sqrt{2}\\ b=6sin(315^o)\\ \qquad 6\left( -\frac{\sqrt{2}}{2} \right)\\ \qquad -3\sqrt{2} \end{cases} \\\\\\ z=(~3\sqrt{2}~,~-3\sqrt{2}~)\implies z=3\sqrt{2}-3\sqrt{2}~i[/tex]

Answer:

The answer is:

         [tex]\sqrt{6}(\cos 315\°+i\sin 315\°)=\sqrt{3}-i\sqrt{3}[/tex]

Step-by-step explanation:

The complex number is given as:

[tex]\sqrt{6}(\cos 315\°+i\sin 315\°)[/tex]

Now, we know that:

[tex]315\°=360\°-45\°[/tex]

Hence, we have:

[tex]\cos 315\°=\cos (360\°-45\°)\\\\i.e.\\\\\cos 315\°=\cos 45\°=\dfrac{1}{\sqrt{2}}[/tex]

( since, we have:

[tex]\cos (360\°-\theta)=\cos \theta[/tex] )

[tex]\sin 315\°=\sin (360\°-45\°)\\\\i.e.\\\\\sin 315\°=-\sin 45\°=-\dfrac{1}{\sqrt{2}}[/tex]

( since, we have:

[tex]\sin (360\°-\theta)=-\sin \theta[/tex] )

Now, the expression is simplified as follows:

[tex]\sqrt{6}(\cos 315\°+i\sin 315\°)=\sqrt{6}(\dfrac{1}{\sqrt{2}}-i\dfrac{1}{\sqrt{2}})[/tex]

i.e.

[tex]\sqrt{6}(\cos 315\°+i\sin 315\°)=\sqrt{6}\times \dfrac{1}{\sqrt{2}}-i\sqrt{6}\times \dfrac{1}{\sqrt{2}}[/tex]

i.e.

[tex]\sqrt{6}(\cos 315\°+i\sin 315\°)=\sqrt{3}-i\sqrt{3}[/tex]

ACCESS MORE