Respuesta :
a) See the attached for a table and graph.
b) It will be 7.5 years before it is time to dig a new well.
b) It will be 7.5 years before it is time to dig a new well.

Solution:
[tex]f(x)= 200 \times (1.098)^x[/tex]
[tex]f(x)=200 \times(1+\frac{9.8}{100})^x[/tex]
[tex]I_{0}=200,[/tex], R= 9.8%,
Time =x=0,2,4,6,8,10
At, x=0
[tex]I_{0}=200 \times (1.098)^0=200[/tex]
At, x=2
[tex]I_{2}=200 \times (1.098)^2=241.1208[/tex]
At, x=4
[tex]I_{4}=200 \times (1.098)^4=290.696[/tex]
At, x=6
[tex]I_{6}=200 \times (1.098)^6=350.464[/tex]
At, x=8
[tex]I_{8}=200 \times (1.098)^8=422.521[/tex]
At, x=10
[tex]I_{10}=200 \times (1.098)^{10}=509.393[/tex]
We will draw the graph of , [tex]f(x)= 200 \times (1.098)^x[/tex].
So, New Population, when population of village doubles=400
[tex]I_{P}=400\\\\ 400=200\times (1.098)^x\\\\ 2=(1.098)^x\\\\ x=\frac{log2}{log1.098}[/tex]
[tex]x=\frac{0.30102}{0.04060}\\\\ x=7.414[/tex]
So, it take approximately, 7 years and approximately 146 days that is 7.414 years by the village to dig the new well.
