Respuesta :
Answer is: the equilibrium concentration of benzoic acid is 0,06294 M.
Chemical reaction: C₆H₅COOH(aq) ⇄ H⁺(aq) + C₆H₅COO⁻(aq).
Ka(C₆H₅COOH) = 6,3·10⁻⁵.
c(C₆H₅COOH) = 6,3·10⁻² M.
[H⁺] = [C₆H₅COO⁻] = x; equilibrium concentration.[C₆H₅COOH] = 0,063 M - x.
Ka = [H⁺] · [C₆H₅COO⁻] / [C₆H₅COOH].
0,000063 = x² / 0,063 M - x.
Solve quadratic equation: x = 0,00006 M.
[C₆H₅COOH] = 0,063 M - 0,00006 M.
[C₆H₅COOH] = 0,06294 M
Answer:
[tex][C_6H_5COOH]_{eq}=0.06104M[/tex]
Explanation:
Hello,
In this case, we properly write the undergoing dissociation reaction as follows:
[tex]C_6H_5COOH<-->C_6H_5COO^-+H^+[/tex]
Know, by applying the law of mass action over this dissociation reaction, one obtains:
[tex]Ka=\frac{[C_6H_5COO^-]_{eq}[H^+]_{eq}}{[C_6H_5COOH]_{eq}}[/tex]
Now, we have to notice that the equilibrium concentrations are given by the change [tex]x[/tex], which alters the aforesaid equation in the following way, based on the ICE method:
[tex]Ka=\frac{(x)(x)}{(6.3x10^{-2}M-x)}[/tex]
Now, solving for [tex]x[/tex], we've got:
[tex]Ka(6.3x10^{-2}M-x)=x^2\\6.3x10^{-5}(6.3x10^{-2}M-x)-x^2=0\\3.97x10^{-6}-6.3x10^{-5}x-x^2=0\\x_1=-0.0020M\\x_2=0.00196M[/tex]
Finally, one computes the concentration of benzoic acid as;
[tex][C_6H_5COOH]_{eq}=0.0063M-0.00196M=0.06104M[/tex]
Best regards.
Otras preguntas
