Respuesta :
Total energy is a spring:
[tex] E = \frac{1}{2} kx^2 + \frac{1}{2} mv^2 = \frac{1}{2} ka^2[/tex]
At x = 0.5a:
[tex] \frac{1}{2} k \frac{a}{2} ^2 + \frac{1}{2} mv^2 = \frac{1}{2} ka^2 \\ \frac{1}{2} mv^2 = \frac{1}{2} ka^2 - \frac{1}{8} ka^2 = \frac{3}{8} ka^2[/tex]
The ration:
[tex] \frac{ \frac{3}{8}ka^2 }{ \frac{1}{2} ka^2} = \frac{3}{4} [/tex]
[tex] E = \frac{1}{2} kx^2 + \frac{1}{2} mv^2 = \frac{1}{2} ka^2[/tex]
At x = 0.5a:
[tex] \frac{1}{2} k \frac{a}{2} ^2 + \frac{1}{2} mv^2 = \frac{1}{2} ka^2 \\ \frac{1}{2} mv^2 = \frac{1}{2} ka^2 - \frac{1}{8} ka^2 = \frac{3}{8} ka^2[/tex]
The ration:
[tex] \frac{ \frac{3}{8}ka^2 }{ \frac{1}{2} ka^2} = \frac{3}{4} [/tex]
Answer:
[tex]KE : TE = 3 : 4[/tex]
Explanation:
As we know that the total mechanical energy of the object which is executing SHM is given by
[tex]E_{total} = \frac{1}{2}KA^2[/tex]
here we know that
A = amplitude of SHM
K = spring constant
now we know that total mechanical energy of the spring is always constant so here we can say
kinetic energy + Potential energy = total mechanical energy
we know that potential energy of the spring at any given distance is
[tex]U = \frac{1}{2}kx^2[/tex]
at given position x = A/2
[tex]U = \frac{1}{2}K(\frac{A}{2})^2 = \frac{1}{8}KA^2[/tex]
now we have
[tex]KE + \frac{1}{8}KA^2 = \frac{1}{2}KA^2[/tex]
[tex]KE = \frac{3}{8}KA^2[/tex]
now ratio of kinetic energy and total mechanical energy will be given as
[tex]KE : TE = \frac{3}{8}KA^2 : \frac{1}{2}KA^2[/tex]
[tex]KE : TE = 3 : 4[/tex]