The Young modulus E is given by:
[tex]E= \frac{F L_0}{A \Delta L} [/tex]
where
F is the force applied
A is the cross-sectional area perpendicular to the force applied
[tex]L_0[/tex] is the initial length of the object
[tex]\Delta L [/tex] is the increase in length of the object.
For the guitar string in the problem, we have [tex]L_0 = 1.00 m[/tex], [tex]A=0.500 mm^2 = 0.5 \cdot 10^{-6}m^2[/tex], [tex]E=2.00 \cdot 10^{11}Pa[/tex], and the force applied is [tex]F=1500 N[/tex]. Substituting the numbers into the formula, we find:
[tex]\Delta L = \frac{F L_0}{EA}= \frac{(1500 N)(1.00 m)}{(2.0\cdot 10^{11}Pa)(0.5\cdot 10^{-6}m^2)}=0.015 m [/tex]
So, the string stretches by 0.015 m under a tension of 1500 N.