Respuesta :
I. ABCD is a square so ∡BCD=90°
|BC|²+|CD|² = |BD|²
8² + 8² = |BD|²
|BD|² = 8²·2
|BD| = √[8²·2]
|BD| = 8√2
II. Circular segment BCD is a quater of circle (because ∡BCD=90°)
R=8
So the lenght of arc BD: [tex]L_{BD}=\frac14\cdot 2\pi\cdot R = \frac12\cdot\pi\cdot8 = 4\pi [/tex]
Perimeter of the figure:
[tex]P=|BC|+L_{BC} = 8\sqrt2+4\pi = 4(2\sqrt2+\pi)\ \text{in}[/tex]
The area of circular segment BCD:
[tex]A_{BCD}=\frac14\cdot \pi R^2 =\frac14\cdot \pi\cdot 8^2 =\frac14\cdot \pi\cdot 64 =16\pi[/tex]
III. The area of triangle BCD:
[tex]A_{\Delta BCD}=\frac12\cdot8\cdot8=32[/tex]
IV. The area of figure:
[tex]A=A_{BCD}-A_{\Delta BCD}=16\pi-32=16(\pi-2)\ \text{in}[/tex]
|BC|²+|CD|² = |BD|²
8² + 8² = |BD|²
|BD|² = 8²·2
|BD| = √[8²·2]
|BD| = 8√2
II. Circular segment BCD is a quater of circle (because ∡BCD=90°)
R=8
So the lenght of arc BD: [tex]L_{BD}=\frac14\cdot 2\pi\cdot R = \frac12\cdot\pi\cdot8 = 4\pi [/tex]
Perimeter of the figure:
[tex]P=|BC|+L_{BC} = 8\sqrt2+4\pi = 4(2\sqrt2+\pi)\ \text{in}[/tex]
The area of circular segment BCD:
[tex]A_{BCD}=\frac14\cdot \pi R^2 =\frac14\cdot \pi\cdot 8^2 =\frac14\cdot \pi\cdot 64 =16\pi[/tex]
III. The area of triangle BCD:
[tex]A_{\Delta BCD}=\frac12\cdot8\cdot8=32[/tex]
IV. The area of figure:
[tex]A=A_{BCD}-A_{\Delta BCD}=16\pi-32=16(\pi-2)\ \text{in}[/tex]
Answer:
A=16(pi-2),p=4(2 sqrt2+pi)
Step-by-step explanation: