Respuesta :
Answer: Choice D)
The angle between the two vectors is approximately 71.6 degrees
----------------------------------------------
----------------------------------------------
Work Shown:
Each time I write the word "dot" I mean "dot product".
|u| = length of vector u
|u| = sqrt(u dot u)
|u| = sqrt(<8,4> dot <8,4>)
|u| = sqrt(8*8 + 4*4)
|u| = sqrt(64 + 16)
|u| = sqrt(80)
|u| = sqrt(16*5)
|u| = sqrt(16)*sqrt(5)
|u| = 4*sqrt(5)
-----------------------
|v| = length of vector v
|v| = sqrt(v dot v)
|v| = sqrt(<9,-9> dot <9,-9>)
|v| = sqrt(9*9 + (-9)*(-9))
|v| = sqrt(81+81)
|v| = sqrt(2*81)
|v| = sqrt(2)*sqrt(81)
|v| = sqrt(2)*9
|v| = 9*sqrt(2)
-----------------------
u dot v = <8,4> dot <9,-9>
u dot v = 8*9 + 4*(-9)
u dot v = 72-36
u dot v = 36
-----------------------
cos(theta) = (u dot v)/(|u|*|v|)
cos(theta) = (36)/(4*sqrt(5)*9*sqrt(2))
cos(theta) = (36)/(36*sqrt(10))
cos(theta) = 1/(sqrt(10))
cos(theta) = sqrt(10)/10
theta = arccos(sqrt(10)/10)
theta = 71.56505
which rounds to 71.6 when rounding to one decimal place (nearest tenth)
That's why the approximate answer is roughly 71.6 degrees
The angle between the two vectors is approximately 71.6 degrees
----------------------------------------------
----------------------------------------------
Work Shown:
Each time I write the word "dot" I mean "dot product".
|u| = length of vector u
|u| = sqrt(u dot u)
|u| = sqrt(<8,4> dot <8,4>)
|u| = sqrt(8*8 + 4*4)
|u| = sqrt(64 + 16)
|u| = sqrt(80)
|u| = sqrt(16*5)
|u| = sqrt(16)*sqrt(5)
|u| = 4*sqrt(5)
-----------------------
|v| = length of vector v
|v| = sqrt(v dot v)
|v| = sqrt(<9,-9> dot <9,-9>)
|v| = sqrt(9*9 + (-9)*(-9))
|v| = sqrt(81+81)
|v| = sqrt(2*81)
|v| = sqrt(2)*sqrt(81)
|v| = sqrt(2)*9
|v| = 9*sqrt(2)
-----------------------
u dot v = <8,4> dot <9,-9>
u dot v = 8*9 + 4*(-9)
u dot v = 72-36
u dot v = 36
-----------------------
cos(theta) = (u dot v)/(|u|*|v|)
cos(theta) = (36)/(4*sqrt(5)*9*sqrt(2))
cos(theta) = (36)/(36*sqrt(10))
cos(theta) = 1/(sqrt(10))
cos(theta) = sqrt(10)/10
theta = arccos(sqrt(10)/10)
theta = 71.56505
which rounds to 71.6 when rounding to one decimal place (nearest tenth)
That's why the approximate answer is roughly 71.6 degrees
Answer:
71.6°
Step-by-step explanation:
arctan(4/8) - arctan(-9/9) = 26.57° - (-45°) ≈ 71.6°