We want to find where the function is 0. We will use the quadratic formula to solve this:
[tex]x= \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
In this equation, a=-16, b=70 and c=10:
[tex]x= \frac{-70\pm \sqrt{70^2-4(-16)(10)}}{2(-16)}
\\
\\= \frac{-70 \pm \sqrt{4900--640}}{-32}
\\
\\= \frac{-70 \pm \sqrt{4900+640}}{-32}
\\
\\= \frac{-70 \pm \sqrt{5540}}{-32}
\\
\\= \frac{-70 \pm 74.43}{-32} = \frac{-70+74.43}{-32} \text{ or } \frac{-70-74.43}{-32}
\\
\\= \frac{4.43}{-32} \text{ or } \frac{-144.43}{-32}
\\
\\=-0.138 \text{ or } 4.513[/tex]
Since a negative number makes no sense in the problem situation, we have a time of 4.513 seconds.