Respuesta :
We analyze the linear function to find that it has equation [tex]y=x[/tex]. Drawing the line, we find that it will intersect the circle at negative and positive x-coordinates.
We can prove this by substituting [tex]y=x[/tex] into the given equation:
[tex]x^2+x^2=36[/tex]
[tex]2x^2=36[/tex]
[tex]x^2 = 18[/tex]
[tex]x = \pm 3\sqrt{2}[/tex]
Hence, [tex]x = 3\sqrt{2}[/tex] or [tex]-\sqrt{2}[/tex], so there are both positive and negative values for [tex]x[/tex].
We can prove this by substituting [tex]y=x[/tex] into the given equation:
[tex]x^2+x^2=36[/tex]
[tex]2x^2=36[/tex]
[tex]x^2 = 18[/tex]
[tex]x = \pm 3\sqrt{2}[/tex]
Hence, [tex]x = 3\sqrt{2}[/tex] or [tex]-\sqrt{2}[/tex], so there are both positive and negative values for [tex]x[/tex].
Answer:
will intersect the circle at negative and positive x-coordinates.
Step-by-step explanation:
^^