Respuesta :
For an explicit formula in its simplified form, we must evaluate the first two terms.
For [tex]a_n=48-11n[/tex], [tex]a_1=48-11=37[/tex], and [tex]a_2=48-22=26[/tex]. We see that the common difference is [tex]37-26=-11[/tex], and [tex]a_1=37[/tex], so we write,
[tex]a_1=37, \ \ \ a_n=a(n-1)-11[/tex].
The correct answer is B.
For [tex]a_n=48-11n[/tex], [tex]a_1=48-11=37[/tex], and [tex]a_2=48-22=26[/tex]. We see that the common difference is [tex]37-26=-11[/tex], and [tex]a_1=37[/tex], so we write,
[tex]a_1=37, \ \ \ a_n=a(n-1)-11[/tex].
The correct answer is B.
the rule should be a(n)=a(1)+(n-1)d
d=-11 in this case, so a(n)=a(1)-11(n-1)
a(n)=a(1)-11n+11
a(n)=a(1)+11-11n
a(1)+11=48,
a(1)=37
B is the correct answer.
d=-11 in this case, so a(n)=a(1)-11(n-1)
a(n)=a(1)-11n+11
a(n)=a(1)+11-11n
a(1)+11=48,
a(1)=37
B is the correct answer.