Respuesta :
Answer:
The inverse of the function is [tex]y^{-1}=\sqrt{9-x}[/tex].
The domain of the inverse function is [tex]D:(-\infty,0],\{x|x\in \mathbb{R}\}[/tex]
Step-by-step explanation:
Given : Function [tex]y=9-x^2[/tex] where, [tex]x\geq 3[/tex]
To find : What is the inverse of the function? What is the domain of the inverse?
Solution :
Function [tex]y=9-x^2[/tex]
To find the inverse we interchange the value of x and y,
[tex]x=9-y^2[/tex]
Now, we get the value of y
[tex]y^2=9-x[/tex]
[tex]y=\pm\sqrt{9-x}[/tex]
As [tex]x\geq 3[/tex] so x>0
[tex]y=\sqrt{9-x}[/tex]
The inverse of the function is [tex]y^{-1}=\sqrt{9-x}[/tex].
The domain of the inverse is the range of the original function.
The range is defined as the set of all possible value of y.
As [tex]x\geq 3[/tex]
Squaring both side,
[tex]x^2\geq 9[/tex]
Subtract [tex]x^2[/tex] both side,
[tex]9-x^2\leq 0[/tex]
[tex]y\leq 0[/tex]
The range of the function is [tex]R:(-\infty,0],\{y|y\in \mathbb{R}\}[/tex]
The domain of the inverse function is [tex]D:(-\infty,0],\{x|x\in \mathbb{R}\}[/tex]