Consider the function y = 9 - x2, where x ≥ 3. What is the inverse of the function? What is the domain of the inverse? Show all of your work for full credit.

Respuesta :

Hello,
Please see the attached file.
Thanks.
Ver imagen Professor1994

Answer:

The inverse of the function is [tex]y^{-1}=\sqrt{9-x}[/tex].

The domain of the inverse function is [tex]D:(-\infty,0],\{x|x\in \mathbb{R}\}[/tex]

Step-by-step explanation:

Given : Function [tex]y=9-x^2[/tex] where, [tex]x\geq 3[/tex]

To find : What is the inverse of the function? What is the domain of the inverse?

Solution :

Function [tex]y=9-x^2[/tex]

To find the inverse we interchange the value of x and y,

[tex]x=9-y^2[/tex]

Now, we get the value of y

[tex]y^2=9-x[/tex]

[tex]y=\pm\sqrt{9-x}[/tex]

As [tex]x\geq 3[/tex] so x>0

[tex]y=\sqrt{9-x}[/tex]

The inverse of the function is [tex]y^{-1}=\sqrt{9-x}[/tex].

The domain of the inverse is the range of the original function.

The range is defined as the set of all possible value of y.

As [tex]x\geq 3[/tex]

Squaring both side,

[tex]x^2\geq 9[/tex]

Subtract [tex]x^2[/tex] both side,

[tex]9-x^2\leq 0[/tex]

[tex]y\leq 0[/tex]

The range of the function is [tex]R:(-\infty,0],\{y|y\in \mathbb{R}\}[/tex]

The domain of the inverse function is [tex]D:(-\infty,0],\{x|x\in \mathbb{R}\}[/tex]